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Abstract The aim of this study was to analyze the effects of
low-level laser therapy (LLLT) on the prevention of cartilage
damage after the anterior cruciate ligament transection
(ACLT) in knees of rats. Thirty male rats (Wistar) were
distributed into three groups (n=10 each): injured control
group (CG); injured laser-treated group at 10 J/cm2 (L10),
and injured laser-treated group at 50 J/cm2 (L50). Laser treat-
ment started immediately after the surgery and it was per-
formed for 15 sessions. An 808 nm laser, at 10 and 50 J/cm2,
was used. To evaluate the effects of LLLT, the qualitative and
semi-quantitative histological, morphometric, and immuno-
histochemistry analysis were performed. Initial signs of tissue
degradation were observed in CG. Interestingly, laser-treated
animals presented a better tissue organization, especially at the
fluence of 10 J/cm2. Furthermore, laser phototherapy was able
of modulating some of the aspects related to the degenerative
process, such as the prevention of proteoglycans loss and the
increase in cartilage area. However, LLLT was not able of
modula t ing chondrocytes pro l i fe ra t ion and the
immunoexpression of markers related to inflammatory pro-
cess (IL-1 and MMP-13). This study showed that 808 nm
laser, at both fluences, prevented features related to the artic-
ular degenerative process in the knees of rats after ACLT.
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Introduction

Osteoarthritis (OA) is a common chronic disease among older
people which leads to a loss of articular cartilage [1]. It is
characterized by gradual degeneration of the joint, progressive
destruction of articular cartilage, and new bone formation at
the joint surface and surrounding areas [2, 3]. It is estimated
that 10 % of the population in the world older than 60 years
demonstrated signals of OA [4, 5]. In general, patients with
OA present joint stiffness, loss of mobility, and pain [4, 6].

Treatments of OA involve the administration of nonsteroi-
dal anti-inflammatory drugs and physical therapy, such as
muscle strengthening and stretching, in the early or interme-
diate stages and surgical intervention for joint replacement in
late stages. However, these therapies are introduced only after
the appearance of the first symptoms [7, 8]. In this context,
due to the very limited cartilage regenerative capacity and
consequently the limited efficacy of the standard treatments,
it would be of great interest the investigation of strategic
innovative approaches to prevent the development of the
clinical condition of OA [8].

One promising treatment is the use of low level laser
therapy (LLLT) mainly due to its anti-inflammatory and re-
generative effects on biological tissues [1, 9, 10]. The action of
LLLT is based on the absorption of the light by tissues, which
modulates cell biochemical reactions and stimulates mito-
chondrial respiration [11, 12]. These effects can increase the
synthesis of DNA, RNA, and cell-cycle regulatory proteins,
therefore promoting cell proliferation [11].

In cartilage tissue, in vivo studies demonstrated the positive
effects of laser phototherapy [13]. Kushibiki et al. [9] showed
increased chondrocyte differentiation and higher
chondrogenic mRNA expression in prechondrogenic cells
after laser irradiation. Furthermore, it was demonstrated that
LLLT is able of reducing swelling [13, 14], inhibiting
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inflammation, and reducing fibrosis formation [15] in OA
animal models. Also, Lin et al. [1] affirm that 810 nm LLLT
can improve cartilage structure, prevent articular cartilage
degradation in the knees of the rabbits submitted to anterior
cruciate ligament transection (ACLT), and significantly de-
crease the expression of caspase-3, which is a protein related
to apoptosis of chondrocyte and plays an important role in the
development of OA.

Despite the positive effects of LLLTon tissue regeneration,
the cellular mechanisms of this therapeutic approach on the
prevention of cartilage degeneration have not yet been clari-
fied. Also, the wide range of fluences used by different authors
make the use of LLLT as a treatment modality still controver-
sial. In this context, based on the stimulatory effects of LLLT,
it was hypothesized that light energy could biomodulate car-
tilage metabolism and prevent degenerative process after the
ACLT, providing a treatment with additional advantages for
clinical use. Consequently, the present study was carried out in
order to evaluate the effects of LLLT, at two different fluences,
on the prevention of cartilage damage after the ACLT in the
knees of rats. Histology and immunohistochemistry analysis
were used to evaluate the dose response of laser application in
cartilage tissue.

Materials and methods

Experimental groups

This study was approved and conducted in accordance with
the Animal Care Committee guidelines of the Federal Univer-
sity of São Paulo (1933/2010). Animals were maintained at
19–23 °C on a 12:12 h light–dark cycle in the Animal Exper-
imentation Laboratory of the Federal University of São Paulo.
Rats were housed in plastic cages and had free access to water
and standard food.

ThirtymaleWistar rats (weighing 300±20 g, 12–13weeks)
were randomly distributed into three groups (n=10 each):
injured control group (CG); injured laser-treated group at
10 J/cm2 (L10); and injured laser-treated group at 50 J/cm2

(L50).

Anterior cruciate ligament transection

The animals were submitted to general anesthesia induced by
intra-peritoneal injection of xilazin (Syntec®, 20 mg/kg, IP)
and ketamine (Agener®, at 40 mg/kg, IP) and subjected to
ACLT of the left hind paw. The left knee was shaved and
sterilized. The joint cavity was approached by a lateral
parapatellar incision, the patella was dislocated and the ante-
rior cruciate ligament was transected. The anterior drawer test
was performed by the surgeon and an observer to verify the
success of the surgery procedure [16]. The incision was closed

in layers and antiseptically treated. Further, the animals were
observed for signs of pain, infection, and proper activity.

Laser application

Laser treatment started immediately after the surgery and in
five consecutive days of irradiation with an interval of 2 days,
for 3 weeks (in a total of 15 sessions). LLLT was applied at
two points (on the medial and lateral sides of the joint), using
the punctual contact technique. A low-power Ga-Al-As laser
(Theralaser, DMC® São Carlos, São Paulo, Brazil) was used
at 808 nm, continuous wave diode, with a 0.028 cm2 spot area,
a power output of 30mW, fluence at 10 J/cm2 (irradiation time
of 10s, energy per point 0.3 J) and fluence at 50 J/cm2

(irradiation time of 47 s, energy per point 1.4 J). On the
respective day, animals were euthanized individually by car-
bon dioxide asphyxia and the knee joints were removed for
analysis [17].

Histological analysis

A standard histological protocol was used. Briefly, the spec-
imens were fixated in 4 % formaldehyde for 2 days, followed
by decalcification in 4 % EDTA. The specimens were divided
into two pieces, using a blade, at the mean point between both
condyles, perpendicular to the articular surface. Samples were
embedded in paraffin blocks and histological sections were
obtained (6 μm), in the sagittal plane, starting from the medial
margin of the joint using a microtome (Leica RM-2145,
Germany). Samples were stained with hematoxylin and eosin
( HE—Merck, Darmstadt, Germany) and Safranin-O (Merck,
Darmstadt, Germany). Moreover, three sectionswere obtained
for the immunohistochemical analysis.

Histological descriptive analysis

Histopathological alterations in the articular cartilage were
evaluated by two blinded observers. For descriptive analysis,
the samples were stained with HE to evaluate cellular organi-
zation, cartilage structure, and amount of cells. The specimens
were examined using a light microscopy (×100; Leica
Microsystems AG, Wetzlar, Germany).

Semi-quantitative analysis

A Modified Mankin Score [18] was used as a histopathologic
grading system to assess cartilage damage (Table 1). The HE-
and Safranin-O-stained samples were used for cellularity and
for proteoglycans analyses, respectively. At least three sec-
tions of each animal were examined using light microscopy
(×100; Leica Microsystems AG, Wetzlar, Germany). Two
experienced observers (LA and CB) performed the scoring
in a blinded manner.
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Morphometric analysis

The morphometric study was carried out using one slide
stained with HE per animal. The cartilage thickness and
number of chondrocytes in each area were quantitatively
scored using the computer-based image analysis Axiovision
3.1 Image Analysis (Carl Zeiss, Oberkochen, Germany). To
count the number of chondrocytes, three areas of 80.000 μm2,
at the anterior, central, and posterior region of each slide were
chosen. Within each area, cells were marked and the
chondrocytes average was calculated. Total cartilage area
was also measured from subchondral bone to articular surface
[18]. Two experienced observers (LA and CB) performed the
scoring in a blinded manner [18].

Immunohistochemistry analysis

Paraffin was removed with xylene from serial sections and
were rehydrated in graded ethanol, then pretreated in a micro-
wave oven with 0.01 M citric acid buffer (pH 6) for three
cycles of 5 min each at 850 W for antigen retrieval. The
material was pre-incubated with 0.3 % hydrogen peroxide in
phosphate-buffered saline (PBS) solution for 5 min for inac-
tivation of endogenous peroxidase and then blocked with 5 %
normal goat serum in PBS solution for 10 min. The specimens
were then incubated with primary antibodies interleukin-1
(IL-1β; polyclonal rabbit anti-rat, sc-7884, Sta Cruz biotech-
nology, California, USA) and metalloprotein 13 (MMP-13;
polyclonal rabbit anti-rat, ab75606, abcam, Cambrige, MA,
UK). The tissue sections were deparaffinized and rehydrated,
and incubate with prepared 30% hydrogen peroxide diluted in
phosphate-buffered saline for 30 min. This was followed by
application of biotin-labeled secondary antibody (ABC kit,
PK-6200, Vector laboratories, Burlingame, CA, USA) at 1:5

dilution for 30 min. Colorimetric detection with a diamino-
benzidine substrate (DAB, SK-4100, Vector laboratories, Bur-
lingame, CA, USA) and hematoxylin. For a negative control,
the primary antibody was omitted and PBS alone applied.
Digital images of the ×100 magnification were captured by
optical microscope. Brown marked cells was considered pos-
itive for IL1-β and MMP-13 expression. The results were
evaluated both qualitatively (presence of the immunomarkers)
and semi-quantitatively according to the percentage of posi-
tive cells in the randomly selected fields in each sample using
a light microscopy (Leica Microsystems AG, Wetzlar,
Germany), according to a previously described scoring scale
from 1 to 4 (1=absent, 2=weak, 3=moderate, and 4=intense)
[19, 20] for immunohistochemical analysis. Two experienced
observers (LA and CB) performed the scoring in a blinded
manner.

Statistical analysis

The normality of all variable’s distribution was verified using
the Kolmogorov–Smirnov test. For the variables that exhibit-
ed normal distribution (morphometric evaluation of the cellu-
larity and cartilage area), comparisons among the groups were
made using one-way analysis of variance with post hoc
Tukey’s test. For the variables that exhibited non-normal
distribution (semi-quantitative analysis of cellularity, proteo-
glycans, IL1-β, and MMP-13), Kruskal–Wallis test was used.
PRISMA 5.0 was used to carry out the statistics analysis.
Values of p<0.05 were considered statistically significant.

Results

General findings

Neither postoperative complications nor behavioral changes
were observed. The rats returned rapidly to their normal diet
and showed no loss of weight during the experimentation.
None of the animals died during the experiment and no
infection in the surgical site was observed.

Histological descriptive analysis

Qualitative histological findings were showed in Fig. 1. His-
topathologic analysis revealed that in the CG, 3 weeks post-
surgery, presented a disorganized and irregular tissue, with
initial signs of fibrillation along the entire articular surface and
lower amount of cells in comparison to treated groups
(Fig. 1a). L10 showed a more organized tissue organization
in comparison to CG and L50 groups, with chondrocytes
arranged in parallel in the superficial region and in columns
in the intermediate region. Furthermore, L10 group presented
slight irregularities and absence of fibrillation along the

Table 1 Modified
Mankin Score Cellularity

Normal 0

Hypercellularity 1

Severe hypercellularity 2

Hypocellularity 3

Safranin-O staining

Normal 0

Slight reduction 1

Up to half of total area

Slight reduction 2

On total area or total surface

Severe reduction 3

Up to half of total area

Severe reduction 4

On total area or total surface
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articular surface, with intense presence of cells (Fig. 1b).
Interestingly, L50 demonstrated a slight tissue disorganization
in comparison to L10 group, however a better organization in
comparison with CG. L50 showed slight irregularities and
initial signs of fibrillation only at the anterior and posterior
extremities of the joint cartilage surface, with a higher con-
centration of cells (Fig. 1c).

Semi-quantitative analysis

Figure 2 shows the results of the histological semi-quantitative
analysis. The cellularity analysis demonstrated that no signif-
icant difference was observed between the experimental

groups (Fig. 2). Furthermore, the results of the statistical
analysis revealed a significantly higher value of the proteo-
glycans content in the L10 and L50 compared to the CG
(p<0.001). Similar findings for both treated groups were
observed in the proteoglycans analysis (Fig. 3b).

Morphometric analysis

Figure 4a shows the morphometric evaluation of the cellular-
ity. The statistical analysis showed that similar findings were
found in the parameter in all experimental groups. Further-
more, CG group showed a significantly higher cartilage area
compared to both treated groups (p<0.001; Fig. 4b).

Fig. 1 Representative photomicrographs of the experimental groups
(HE). Organization of chondrocytes (arrow), fibrillation and irregularities
(arrowhead), joint cartilage (JC), subchondral bone (b). a CG: injured

control group; b L10: injured laser-treated group at 10 J/cm2; c L50:
injured laser-treated group at 50 J/cm2. Bar 200 μm (magnification,
×100)

Fig. 2 Results of the semi-
quantitative analysis of cellularity.
CG injured control group, L10
injured laser-treated group at 10 J/
cm2, L50 injured laser-treated
group at 50 J/cm2
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Immunohistochemistry analysis

Qualitative

Figure 5 shows the qualitative analyses of IL1-β immunohis-
tochemistry. Immunolabeling of this marker was observed
mainly in the nucleus of the cells, at the anterior and posterior
extremities of the joint cartilage for all the groups.

Also, the qualitative analysis of MMP-13 immunohisto-
chemistry showed the presence of this marker mainly in the
nucleus of the cells distributed along the joint cartilage for all
groups (Fig. 6).

Semi-quantitative

Semi-quantitative analysis of IL1-β and MMP-13 revealed
that no significant difference was found between the experi-
mental groups (Fig. 7a, b).

Discussion

The present study investigated the effects of 808 nm laser,
used at two different fluences (10 and 50 J/cm2) in the pre-
vention of the degenerative process in the articular cartilage
after the ACLT in the knee of rats. The histological results
demonstrated that initial signs of tissue degradation were
observed in CG. Interestingly, laser-treated animals presented
a better cartilage tissue organization. Furthermore, laser pho-
totherapy was able of modulating some of the aspects related
to the degenerative process, such as the prevention of proteo-
glycans loss and the increase in cartilage area. However,
LLLT was not able of modulating chondrocytes proliferation
and the immunoexpression ofmarkers related to inflammatory
process (IL-1 and MMP-13).

The pathogenesis of OA highlighted the importance of the
development of therapeutic strategies to treat and to prevent
the clinical symptoms of the degenerative process [21]. In this
context, some authors demonstrated that laser therapy is

Fig. 3 a Representative photomicrographs of the experimental groups
(Safranin-O). L10 and L50 sections highlight the significantly higher
value of the proteoglycan content compared to the CG. b Results of the

semi-quantitative analyses of proteoglycans. CG injured control group,
L10 injured laser-treated group at 10 J/cm2, L50 injured laser-treated
group at 50 J/cm2. *p≤0.001 vs. CG. Bar 200 μm (magnification, ×100)
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efficient to stimulate cartilage metabolism and modulate the
inflammatory process related to OA [22, 23].

The degeneration of the cartilage tissue is followed by a
series of physiological modifications in an attempt of
protecting tissue [24, 25]. An increased tissue metabolism
and accelerated cell proliferation are common histological
findings in experimental models of OA [26]. In the present
study, the 808 nm laser irradiation, at both fluences, was
efficient to promote a better tissue organization in the injured
rats. It can be hypothesized that the energy intake of LLLT
may lead to a return to tissue homeostasis, avoiding some of
the typical aspects of the degeneration. These findings

corroborate those of da Rosa et al. [15] who observed that
808 nm laser stimulated angiogenesis and reduced the forma-
tion of fibrosis in an experimental model of OA in rats.

In addition, the accelerated cell metabolism in the presence
of OA leads to an abnormal increase in the number of cells,
cellular disorganization, and cell death by apoptosis [27, 28].
In the present study it was found that the semi-quantitative and
quantitative analysis of the chondrocyte number demonstrated
similar findings in control and treated groups. It may be
hypothesized that the experimental period (3 weeks post-
surgery) was not sufficient to initiate the alterations in cell
proliferation related to the cartilage degenerative process.

Fig. 4 a Results of the
morphometric analysis of
cellularity. b Results of the
morphometric analysis of
cartilage area. *p≤0.001 vs. CG.
CG injured control group, L10
injured laser-treated group at 10 J/
cm2, L50 injured laser-treated
group at 50 J/cm2
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Furthermore, proteoglycan loss in the cartilage tissue is
another abnormality often observed during the course of de-
generative process [29] and it appears before macroscopic
signs of deterioration [30]. Also, there is a progressive de-
crease in the rate of glycosaminoglycan synthesis by
chondrocytes with the evolution of the degenerative process.
Interestingly, in the present study, the 808 nm laser therapy, at
both fluences, prevented proteoglycan loss, indicating that this
therapy may have modulated articular cartilage metabolism.
These results corroborate those of Lin et al. [1] who found an
increased production of proteoglycans amount after He-Ne
632 nm laser irradiation in a model of OA in rabbits. More-
over, Gottlieb et al. [31] also observed cartilage regeneration
after laser stimulation due to increased proteoglycan synthesis
in arthritic cartilage of rabbits.

At an early stage of OA process, there is an apparent
increase in cartilage volume due to swelling which supports
a pathophysiological role of inflammation [25]. In the present
study, LLLT was able of modulating the increase of cartilage
area related to the initial phase of cartilage degradation, at both
fluences analyzed. This phenomenon may be related to LLLT
capacity of modulating cell metabolism in an attempt to delay
the evolution of the degenerative process in the articular
cartilage.

Many authors demonstrated the degenerative process relat-
ed to the OA is accompanied by joint inflammation [32]. The

balance of cartilage matrix remodeling is altered by the over-
production of cytokines and catabolic factors, which includes
IL1-β and may lead to chondrocytes apoptosis [26, 33]. Also,
the degradation of extracellular matrix is regulated by the
matrix metalloproteinase’s (MMPs) family, mainly MMP-1,
3, and 13 [34]. Data of the literature show that 810 nm LLLT
produced anti-inflammatory effects in OA experimental mod-
el of rabbits [35]. In this study, laser therapy, at both fluences,
did not have any effect on the expression of IL1-β and MMP-
13 markers. Possibly, a longer period of irradiation might be
necessary to achieve a positive response in the modulation of
the inflammatory markers expression.

Also, it has been suggested that the effect of laser irradia-
tion on tissues is wavelength and dose-dependent [36]. The
present study demonstrate that both fluences used, combined
with 808 nm laser, at the period analyzed produced similar
effects on cartilage tissue organization after ACLT. It is im-
portant to stress that the fluence is extremely variable in laser
therapy studies relating to tissue regeneration and a wide range
of doses is used for different authors [17]. For example,
investigations comparing the effects of 810 nm laser irradia-
tion at different dosage regimes (3.75 to 25 J/cm2) on red
blood cell membranes have shown that a dose of 15 J/cm2

increased ATPase activity [37] whereas other researchers have
found that the mitotic rate in carcinoma cells of the gingival
mucosa decrease after 805 nm diode laser irradiation at

Fig. 5 Representative sections of IL1-β immunohistochemistry. Immunolabeled chondrocytes (arrow). aCG injured control group; b L10 injured laser-
treated group at 10 J/cm2; c L50 injured laser-treated group at 50 J/cm2. Bar 100 μm (magnification, ×200)

Fig. 6 Representative sections of MMP-13 immunohistochemistry. Immunolabeled chondrocytes (arrow). a CG injured control group; b L10 injured
laser-treated group at 10 J/cm2; c L50 injured laser-treated group at 50 J/cm2. Bar 100 μm (magnification, ×200)
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intensities of 4 and 20 J/cm2 [38]. The same scenario occurs in
the field of cartilage repair where authors used fluences from 3
to 142 J/cm2 [1, 15]. At this time, it is difficult to define an
ideal protocol of laser treatment to prevent cartilage degrada-
tion yet. However, it can be suggested that the amount of
energy offered to the tissue by the two fluences used in the
present study were able to interact properly with cartilage
tissue, restoring homeostasis, and preventing degradation.
Further studies are needed to evaluate the exact mechanisms
of action of different laser dosages on cartilage to determine
the best treatment.

Conclusion

In conclusion, this study showed that 808 nm laser, at 10 and
50 J/cm2, prevented the progression of morphological modi-
fications related to the articular damage in the knees of rats
after ACLT. Consequently, these data highlight the potential
of the use of this therapy to improve the biological perfor-
mance for cartilage regeneration applications. Further long-
term studies should be carried out to provide additional infor-
mation concerning the late stages of interaction between
LLLT and cartilage degenerative process.

Fig. 7 a Results of the IL-1β
expression. b Results of the
MMP-13 expression. CG injured
control group, L10 injured laser-
treated group at 10 J/cm2,
L50 injured laser-treated group
at 50 J/cm2
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